Hai Sobat Matematika, tentu Anda sudah tidak asing lagi dengan pembahasan dasar dalam ilmu matematika, aritmatika. Ya, aritmatika merupakan bagian dari ilmu matematika yang mempelajari tentang operasi dasar bilangan, yakni penjumlahan, pengurangan, perkalian, serta pembagian. Lebih lanjut, dalam aritmatika juga terdapat barisan dan deret aritmatika. Apa itu barisan aritmatika? Apa perbedaan dari baris artimatika dengan deret matematika? Yuk simak penjelasan berikut ini!

Periksa di sini untuk les privat Matematika Jakarta Timur

Barisan dan deret aritmatika
Pernahkah Anda memperhatikan bahwa kursi bioskop disusun dengan pola tertentu?

Pernahkah Anda memperhatikan jumlah kursi di bioskop? Umumnya, kursi di bioskop disusun menggunakan pola tertentu. Di dalam gedung bioskop terdapat 25 baris kursi. Jika di barisan pertama kursi bioskop memuat 20 kursi dan setiap baris berikutnya memuat 4 kursi lebih banyak daripada baris di depannya, maka Anda dapat menentukan berapa jumlah kursi yang terdapat pada baris ke-5. Anda bahkan dapat menentukan jumlah keseluruhan kursi di dalam bioskop. Inilah yang disebut dengan barisan deret aritmatika.

Jika Anda kesulitan dalam memahami matematika, mengikuti kursus matematika dapat membantu Anda untuk memahami dengan mudah dan cepat. Guru privat matematika mengikuti setiap kemajuan Anda dan meningkatkan kelemahan Anda.

Anda akan lebih memahami matematika dengan mempelajari limit fungsi Aljabar!

Tersedia guru-guru Matematika terbaik
Fadil
5
5 (41 ulasan)
Fadil
Rp500,000
/Rp/jam
Gift icon
Kursus pertama gratis!
Fitria
4.9
4.9 (53 ulasan)
Fitria
Rp60,000
/Rp/jam
Gift icon
Kursus pertama gratis!
Faisal hisyam
4.9
4.9 (55 ulasan)
Faisal hisyam
Rp100,000
/Rp/jam
Gift icon
Kursus pertama gratis!
Michael
5
5 (28 ulasan)
Michael
Rp100,000
/Rp/jam
Gift icon
Kursus pertama gratis!
Muddhar
5
5 (32 ulasan)
Muddhar
Rp150,000
/Rp/jam
Gift icon
Kursus pertama gratis!
Ogifta
4.9
4.9 (54 ulasan)
Ogifta
Rp100,000
/Rp/jam
Gift icon
Kursus pertama gratis!
M arizal, mse
4.9
4.9 (26 ulasan)
M arizal, mse
Rp250,000
/Rp/jam
Gift icon
Kursus pertama gratis!
Anto
5
5 (23 ulasan)
Anto
Rp400,000
/Rp/jam
Gift icon
Kursus pertama gratis!
Fadil
5
5 (41 ulasan)
Fadil
Rp500,000
/Rp/jam
Gift icon
Kursus pertama gratis!
Fitria
4.9
4.9 (53 ulasan)
Fitria
Rp60,000
/Rp/jam
Gift icon
Kursus pertama gratis!
Faisal hisyam
4.9
4.9 (55 ulasan)
Faisal hisyam
Rp100,000
/Rp/jam
Gift icon
Kursus pertama gratis!
Michael
5
5 (28 ulasan)
Michael
Rp100,000
/Rp/jam
Gift icon
Kursus pertama gratis!
Muddhar
5
5 (32 ulasan)
Muddhar
Rp150,000
/Rp/jam
Gift icon
Kursus pertama gratis!
Ogifta
4.9
4.9 (54 ulasan)
Ogifta
Rp100,000
/Rp/jam
Gift icon
Kursus pertama gratis!
M arizal, mse
4.9
4.9 (26 ulasan)
M arizal, mse
Rp250,000
/Rp/jam
Gift icon
Kursus pertama gratis!
Anto
5
5 (23 ulasan)
Anto
Rp400,000
/Rp/jam
Gift icon
Kursus pertama gratis!
Mulai

Pengertian Barisan dan Deret Aritmatika

Barisan dan deret
Ada banyak yang dapat diulas dari bilangan dengan matematika; aritmatika!

Pengertian Barisan Aritmatika

Jika terdapat barisan bilangan 1, 3, 5, 7, 9, …, …., …., lalu dapatkah Anda menentukan tiga bilangan yang tepat untuk mengisi bagian rumpang tersebut? Ya betul sekali, bilangan yang tepat adalah 11, 13, dan 15. Mudah bukan? Tapi apakah Anda dapat menentukan bilangan yang terletak di urutan ke-20? Nah, untuk menentukan urutan yang cukup besar ini, Anda dapat menggunakan konsep barisan dan deret. Untuk memahaminya, yuk simak penjelasan selengkapnya!

Barisan aritmatika adalah barisan atau urutan bilangan yang memiliki selisih tetap. Seperti barisan bilangan di atas; 1, 3, 5, 7, 9, 11, 13, 15, dan seterusnya, adalah contoh barisan aritmetika yang jika diperhatikan selisih antarbilangannya tetap, yaitu 2. Selisih pada barisan aritmatika disebut dengan beda atau dapat dinyatakan secara matematis sebagai b. Setiap bilangan yang menyusun barisan disebut juga dengan suku atau dinyatakan sebagai Un. Sebagai contoh bilangan 1 yang terletak pada urutan pertama maka dinyatakan secara matematis dengan 1 = U1, 3 = suku ke-2 (U2), dan seterusnya. U1 juga dapat dinyatakan dengan a. Dengan mengetahui beda pada suatu barisan, maka mudah bagi kita untuk menentukan bilangan pada barisan tertentu jika menggunakan pola yang sama, yakni menggunakan barisan aritmatika.

Ada dua macam barisan aritmatika, yakni barisan aritmatika naik dan barisan aritmatika turun. Agar Anda memahami lebih banyak, kami sarankan untuk Anda bergabung dengan kursus privat.

Cek di sini untuk les matematika di Medan

Pengertian Deret Aritmatika

Deret aritmatika adalah jumlah n suku pertama (Sn) dari barisan aritmatika. Ciri dari deret matematika ini adalah suku-suku bilangan yang dijumlahkan memiliki selisih yang tetap. Sebagai contoh deret aritmatika 1 + 3 + 5 + 7 + 9 + 11 + 15 + ….., dan seterusnya.

Pengertian deret dan baris aritmatika telah kamu pahami, coba pahami juga pengertian polinomial!

Rumus Barisan dan Deret Aritmatika

Setelah memahami pengertian barisan dan deret aritmatika, saatnya untuk mempelajari rumus barisan deret aritmatika. Rumus barisan aritmatika biasanya digunakan untuk menentukan suku ke-n dari suatu barisan. Sementara, rumus deret aritmatika digunakan untuk menentukan jumlah n suku pada rentang tertentu.

Rumus Barisan Aritmatika

Secara umum, barisan bilangan aritmatika dapat dinyatakan secara matematis sebagai;

U1, U2, U3, U4, U5, U6, …, Un - 1, Un

Dari barisan tersebut, diperoleh;

U1 = a

U2 = U1 + b = a + b

U3 = U2 + b = (a + b) + b = a + 2b

U4 = U3 + b = (a + 2b) + b = a + 3b

Un = Un - 1 + b = (a + (n-2) b) + b = a + (n - 1) b

U1U2U3U4U5
aa+ba+2ba+3ba+4b

Jadi dapat disimpulkan bahwa rumus barisan aritmatika adalah;

Un = a + (n - 1) b

Kami juga menyarankan kamu mempelajari tentang bilangan rasional karena itu hal paling dasar dalam Matematika!

Rumus Deret Aritmatika

Deret aritmatika merupakan jumlah dari suku-suku pada barisan aritmatika. Jika diketahui suatu barisan aritmatika U1, U2, U3, U4, U5, U6, …., Un maka deret aritmatikanya adalah U1 + U2 + U3 + U4 + U5 + U6 + … + Un dan dilambangkan dengan Sn. Secara matematis Sn sebagi berikut;

Sn = 1/2 n (a + Un) atau Sn = 1/2 n (2a + (n-1) b)

Keterangan;

Un = suku ke-n deret aritmatika

a = suku pertama

b = beda

n = banyaknya suku

Untuk memahami lebih lanjut penggunaan rumus-rumus di atas, Anda dapat mengerjakan latihan-latihan soal barisan dan deret aritmatika.

Apakah kamu juga sudah memahami rumus dasar integral? Klik di sini jika belum!

Contoh Soal Baris Deret Aritmatika

Soal 1

Fikri memiliki seutas tali rafia yang dipotong menjadi 6 bagian dan membentuk barisan aritmetika. Panjang tali yang terpendek adalah 6 cm dan yang terpanjang 36 cm. Tentukan panjang rafia semula!

Pembahasan

Diketahui:

Banyak potongan tali = n = 6

Panjang tali terpendek = U1 = a = 6

Panjang tali terpanjang = U6 = 36

Maka, panjang tali rafia semula adalah jumlah seluruh panjang potongan tali rafia (S6), sehingga:

Sn = 1/2 n (a + Un)

S6 = 1/2 . 6 (6 + 36) = 126

Jadi panjang tali semula adalah 126 cm

Soal 2

Setiap minggu Ratih menabung di sekolah. Pada minggu pertama, Ratih menabung sebesar Rp 30.000. Pada minggu kedua dan seterusnya, Ratih menabung Rp 8.000 lebih banyak dari minggu sebelumnya. Maka, berapakah Ratih harus menabung pada minggu ke-14?

Pembahasan

Diketahui;

Tabungan Ratih membentuk barisan aritmatika dengan a = 30.000 dan b = 8.000, sehingga

Un = a + (n -1) b

U14 = 30.000 + (14 - 1) 8.000 = 134.000

Jadi besarnya uang yang Ratih tabung pada minggu ke-14 sebesar Rp 134.000

Soal 3

Panjang sisi sebuah segituga siku-siku membentuk barisan aritmatika. Jika keliling segitiga tersebut adalah 72, maka berapakah luas segitiga?

Sekarang cobalah contoh soal di atas dan diskusikan jawaban Anda pada kolom komentar!

Dapatkan lebih banyak latihan soal untuk membantu Anda belajar dengan mudah. Selain itu, kursus privat dengan cepat membantu Anda memahami konsep barisan dan deret aritmatika. Untuk itu, pilihlah guru privat matematika terbaik hanya di Superprof.

Apa Anda menyukai artikel ini? Berikan penilaian Anda

5.00 (1 nilai)
Loading...

Kurniawan

Seseorang yang senang berbagi ilmu dan pengetahuan yang diharapkan akan bermanfaat bagi banyak orang